Eutectic freezing
one concept, different applications

Leila Zargarzadeh
22 April 2013

Outline

1. Eutectic freezing
2. Application in water treatment
3. Osmotic virial equation (OVE)
4. Objectives of my research
Eutectic point on phase diagram
binary system

NaCl – water phase diagram

http://people.ucalgary.ca/~kmuldrew/cryo_course/cryo_chap6_1.html
Phase diagram of ternary system

![Phase diagram of ternary system](http://faculty.uml.edu/nelson_eby/89.304/IMAGES/Ternary%20projections.jpg)

Eutectic freeze crystallization (EFC)

EFC is a technique for separating water and solutes based on the existence of a eutectic point, where an equilibrium exists between ice, salt and a solution with a specific concentration. Below the Eutectic temperature no liquid phase can exist.

Benefits of EFC [1]

- High purity of water, with no additional chemicals
- Extraction of valuable salt from waste water
- Lower energy consumption compared to evaporation techniques
 - Enthalpy of evaporation is ~7 times higher than enthalpy of freezing
 - The ice that is formed can be used for pre cooling

Goal: Use osmotic virial equation of state (OVE) to predict eutectic point

Multi-component solution behaviour can be predicted from single-component OVE coefficients (that are obtained from fitting to experimental data).

This method has been used to predict the ice freezing point as a function of solution concentration - the ice liquidus (region 1).

Use of the OVE in the ice precipitating region

For binary system:
\[\pi = m_i + B_i m_i^2 + C_i m_i^3 + \cdots \]

Me₂SO \((i=2)\), Glycerol \((i=3)\)

R = mass glycerol/mass Me₂SO

\[\pi = m_2 + m_3 + B_2 m_2^2 + B_3 m_3^2 \\
+ (B_2 + B_3) m_2 m_3 + C_2 m_2^3 + C_3 m_3^3 \\
+ 3(C_2 C_3)^{1/3} m_2^2 m_3 \\
+ 3(C_2 C_3)^{1/3} m_2 m_3^2 \]

Prickett et. al., Application of the osmotic virial equation in cryobiology, Cryobiology 60, 2010
Why OVE?

1. In its single-solute form, the OVE is applicable to a wide range of solutes including: macromolecules, electrolytes, inorganic and organic components.

2. Prediction of multi-component solution does not require fitting to multi-component solution experimental data.

<table>
<thead>
<tr>
<th>Binary solution</th>
<th>(\pi = m_2 + B_2 m_2^2 + C_2 m_2^3 + \ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-component solution</td>
<td>(\pi = \sum_{i} \sum_{j} \frac{(B_i + B_j)}{2} m_i m_j + \sum_{i} \sum_{j} \sum_{k} (C_i C_j C_k)^{1/3} m_i m_j m_k)</td>
</tr>
</tbody>
</table>

Thank you.
Back up slides

http://www.reciprocalnet.org/edumodules/crystallization/images/crystallization.jpg
Relation between T and π (m_2)

Region 1 (solid phase is ice)

- @ equilibrium: $\mu_1^L(T,P,x_2) = \mu_1^S(T,P)$
- μ_i from Gibbs-Duhem

\[
\pi = -\frac{\mu_i - \mu_i^0}{RTM_1} \mu_1^L(T,P,x_2) = \mu_1^L(T,P,x_2) + \bar{v}_1^L(p - P_{ref}) + \bar{S}_1^L(T - T_{ref}) - \bar{v}_1^L \pi
\]

Also

\[
\mu_1^S(T,P) = \mu_1^S(T_{ref}, P_{ref}) + \bar{v}_1^S(p - P_{ref}) + \bar{S}_1^S(T - T_{ref})
\]

P = constant

\[
\pi = \frac{T_{FP}^o - T_{FP}}{[W_1/(S_1^{oL} - S_1^{oS})]RT_{FP}}
\]